Module 4 Case introduces Python lists, tuples, and strings. Your assignment is to create mini-Python projects or programs and to run them in the Python-IDLE environment.
Review the videos and read Chapter 11-13 in the online book of "Python 2: For Beginners Only.”
[bookmark: _GoBack]Use Python to run the following .py Files with the original values and statements. Next, change some of the values to the following. Please keep in mind that statements may change accordingly once you modify the programs. The modified programs must execute correctly.
Code is adapted from MITOpenCourseWare, “A gentle introduction to programming using Python” (under the Open Education Consortium Global Network for Open Education and authorized by the creative commons license).
For Example 1, change “Hi Class!” to “Good Morning All”
For Example 2, change [3, 4, 5, 6] to [1.50, 7, 2.75, 9]
For Example 3, change (5, 6, 7, 8) to (100, 101, 102, 103)

Shaw, Z. (2012). Learn Python the hard way. Retrieved from http://learnpythonthehardway.org/book/ex32.html
Shaw, Z. (2012). Learn Python the hard way. Retrieved from http://learnpythonthehardway.org/book/ex34.html
Shaw, Z. (2012). Learn Python the hard way. Retrieved from http://learnpythonthehardway.org/book/ex40.html
Kindy, M. (2008). Chapter 11: Lists. Python 2: For Beginners Only. Edition1.0. Retrieved from http://cs118.kindy.net/p2fbo_20131230.pdf
Kindy, M. (2008). Chapter 12: Tuples. Python 2: For Beginners Only. Edition1.0. Retrieved from http://cs118.kindy.net/p2fbo_20131230.pdf
Kindy, M. (2008). Chapter 13: Strings. Python 2: For Beginners Only. Edition1.0. Retrieved from http://cs118.kindy.net/p2fbo_20131230.pdf

1 - String Examples.py File

Lecture 4
string_examples.py

Strings

Define a string
new_string = "Hi Class!"
Remember we can iterate through it
for letter in new_string:
 print letter

We can concatenate two strings together
s1 = "Hi"
s2 = "Class"
print s1 + s2

but remember, gluing together with a comma adds an extra space
print s1, s2

and with a comma you can glue together different data types
print s1, 6.189, s2

We can index the string
print "new_string[0] is", new_string[0]
And slice it
print "new_string[0:3] is", new_string[0:3]

We can get the length of our string using the len function
print "len(new_string) is:", len(new_string)

And use various string methods on it
print "new_string.upper()", new_string.upper()
print "new_string.lower()", new_string.lower()

2 - List Examples.py File

Lecture 4
list_examples.py

Lists are defined by brackets

new_list = [3, 4, 5, 6]
print "new_list is:", new_list

Just like strings, we can index & slice them
print "new_list[2] is:", new_list[2]
print "new_list[0:2] is:", new_list[0:2]

And iterate through them:
for item in new_list:
 print item

Lists, however, are mutable! So, if we want we can change the
value of one element

new_list[2] = 100
print "new_list is:", new_list

Or, add on a new element with append:
new_list.append(87)
print "new_list is:", new_list

Or insert
new_list.insert(0, 200) # insert at position 0 the element 200
print "new_list is:", new_list

Or even delete an element using remove
new_list.remove(100) # Write in the item that you want to remove from the list
print "new_list is:", new_list

Lists are possibly the most useful data structure in Python!
We'll see more about them in lab; check out the documentation on
list methods for more cool things to do

3 – Tuple Examples.py File

Lecture 4
tuple_examples.py

Tuples are immutable and defined by parentheses

new_tuple = (5, 6, 7, 8)
print "new_tuple is:", new_tuple

We can index them, just like strings
print "new_tuple[2] is:", new_tuple[2]

And iterate through them:
for item in new_tuple:
 print item

Even show how long they are
print "Tuple length is:", len(new_tuple)

and iterate through indicies

for index in range(len(new_tuple)):
 print "Index is:", index
 print "Value at that index is:", new_tuple[index]

But because they are immutable, we cannot redefine
a single element (remember this does work with lists, though)
#new_tuple[1] = 77 # Returns an error

We can also do something called _tuple unpacking_

(a, b, c, d) = new_tuple
print "a is:", a
print "b is:", b
print "c is:", c
print "d is:", d

Make sure that you always have the same number of
variables when you unpack a tuple!

Tuples are immutable. To change a tuple, we would need
to first unpack it, change the values, then repack it:

Redefine b
b = 77

Repack the tuple
new_tuple = (a, b, c, d)
print "new_tuple is now:", new_tuple

Once you have executed these programs (1 - String Example; 2 - List Examples; and 3- Tuple Examples), modify the .py files according to the instructions given to revise the code by program examples. You need to run the IDLE to execute the program changes and review the program results.
You can use the Snipping tools or screen print (ctrl + Print Screen) to show the Pythons editor’s (IDLE) code and results and demonstrate that your program executed correctly.
Create a submission file named as “ITM205-Case 4-Exercises-YourFirstNameLastName “containing executed programs (.py files) for 1 - String Example; 2 - List Examples; and 3- Tuple Examples.
Write a summary document in Microsoft Word format named “ITM205-Case 4-Summary-YourFirstNameLastName” to show what you have accomplished.

